

Hydrogen Fleet Refuelling Infrastructure Ecosystem Studies

PRESENTED BY RYMAL SMITH

H2GO AND CHANGE ENERGY SYSTEMS CH2NGE

HBCoC Mississauga – June 13, 2018

About H2GO

- H2GO Canada is a not-for-profit corporation created to accelerate the development of markets for hydrogen as a low-carbon transportation fuel in Canada.
- Philosophically our goal is to help create the correct "Ecosystem" for the deployment of Hydrogen Vehicle Refuelling Infrastructure.
- As a Not-For-Profit H2GO will collaborate closely with HBCoC, CHFCA, Government, and Academia in achieving this goal.

Developing the Ecosystem

• Our 28 year Alt Fuel history has taught us that it is not enough to have:

- Safe and reliable Hydrogen powered Vehicles
- Safe and easy to use Hydrogen Vehicle Refuelling Facilities
- A good (or even excellent) Economic Value proposition
- In order to successfully deploy an Alternative Transportation Fuel requires:
 - Comprehensive Regulations backed by solid Codes and Standards
 - Government and public educated on the safety, benefits, and <u>limitations</u>
 - Market outreach that clearly communicates the <u>full</u> Value Proposition
 - A well established Vehicle supply chain and Servicing network.
 - A properly deployed Fuel supply chain and Refuelling network.
 - Well established Station Installation and Service capacity.
 - A properly trained and resourced workforce
 - <u>This is a woefully incomplete list</u>...

Recent work

- Over the past 8 months NRCan engaged H2GO to complete two reports:
 - 1) Modelling and Analysis of Hydrogen Vehicle Applications for Canadian Transportation
 - Discussed at the HBCoC meeting at U of T last November
 - 2) <u>Analysis of Cross Sector Integration of Hydrogen and Fuel Cell</u> <u>Technologies in Canada</u>
- These reports are in support of NRCan's work toward the development of a comprehensive Hydrogen Vehicle Deployment Pathway study.

#1 Modelling and Analysis of Hydrogen Vehicle Applications

 Since the 1990s members of the H2GO team have been engaged by Government, Industry, and Fleet Operators to evaluate the Life Cycle Techno/ Economic Value Proposition of many Alternative Fuels across a

variety of:

- Regions and markets
- Vehicle Platforms
- Fleet Applications
- Fleet Sizes, and
- Fuel Supply Chains.

- The model provides a Triple Bottom Line Value Proposition based on:
 - <u>Economics</u> FVI incorporating <u>all</u> Fuel, Infrastructure, Vehicle, Capital and Operating costs - enables comparison of diverse markets and fuels
 - Net GHG emissions reductions (coupled with a growth model and GHGenius)
 - Direct Job Creation (coupled with a growth model)

Model Considerations

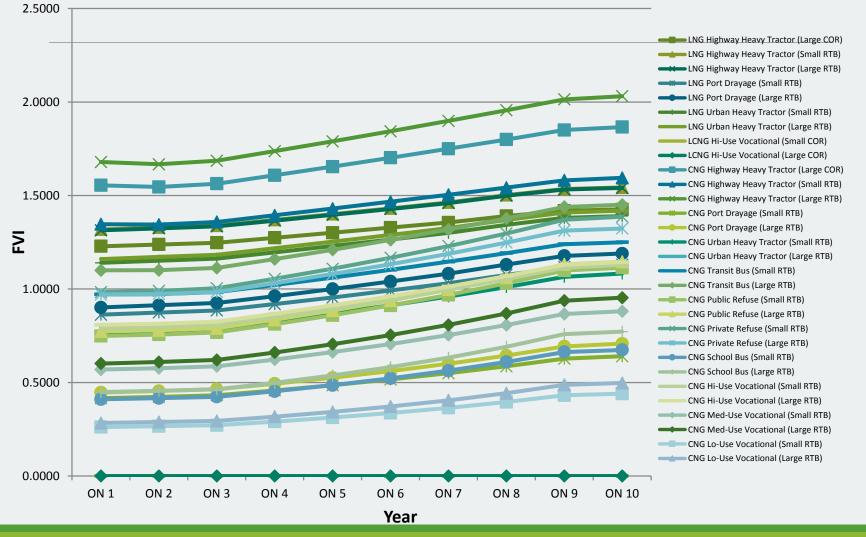
- The Modeling draws upon extensive experience in the Design, Project Management, and Operation of ~200 refuelling stations for Natural Gas and Hydrogen vehicle fleets (typically about 10/year). Ranging from 20 Fork Lifts to >600 Transit buses
- The Modeling Provides:
 - Direct comparison of fuels across different regions, vehicle platforms, applications, and fleet sizes
 - Regional Market Level to Individual Fleet Level

- A 10 year outlook including forecasts of input values and growth scenarios
- Costs and resources required to get from <u>Here... to There</u>.
- Triple Bottom line based on <u>specific</u> End User Needs and Values (Economic, Environmental, Social)

Modeling Considerations

• The Modeling Includes:

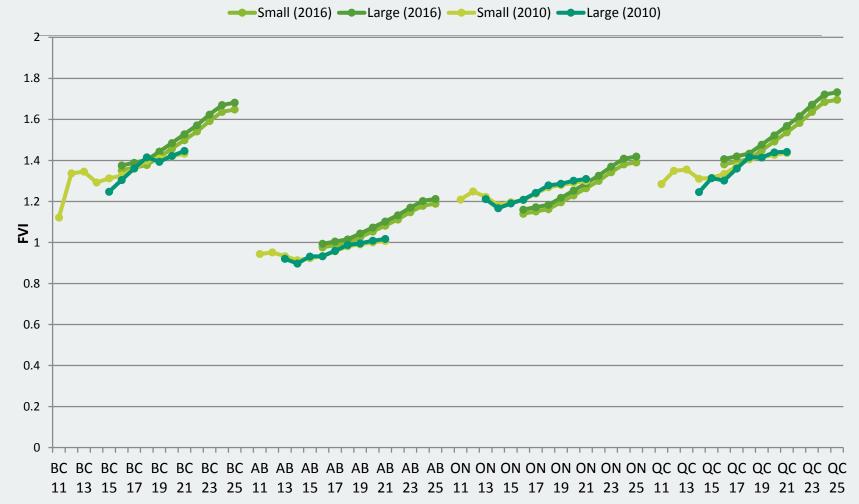
- Fleet location, size, and rate of Fleet deployment/replacement
- Refuelling mode: Cascade, buffer, slow fill, private on-Site, retail forecourt
- Fuel sources, blends, and modes of delivery
- Local/Regional Regulations, and Costs of: Utilities, Fuel, Equipment, Construction, Manpower
- Maintenance schedules
- Miscellaneous costs such as training, insurance, resale values, etc.
- Cost of facilities modifications (Maintenance bays, garages, etc.)
- Policy Programs: local and national


Hydrogen applications considered in the Modeling

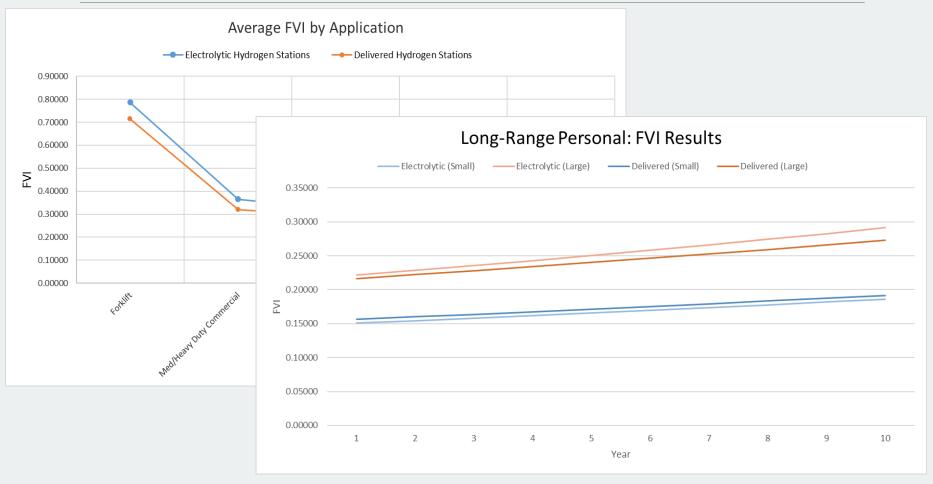
- Applications are many and varied with different operational demands and sustainability goals
 - Each end user has requirements related to economic value, Power, Range, Refueling time, Convenience of Refuelling infrastructure, and values placed on GHG/CAC emissions and Societal benefit

Application	Fleet Size	Mileage (km)	Consumption (kg/year)	Rank	Average FVI
Electrolytic Hydrogen Stations					
Forklift (RTB)	Small – 20 Large – 100	12,000	425	1	0.78591
Med/Heavy-Duty Commercial (COR)	Small – 40 Large – 250	60,000	1,773	2	0.36525
Med-Duty Commercial (RTB)	Small – 40 Large – 250	50,000	1,279	3	0.31822
Long-Range Personal (COR)	Small – 40 Large – 250	30,000	290	4	0.21157
Med-Duty Personal (RTB)	Small – 40 Large – 250	20,000	261	5	0.13950

H2Go Modelling Results – 10 Year Window nada


Ontario FVI Results

Modelling Results


LNG Urban Distribution (RTB)

Year

Sample Results

Conclusions from the modeling exercise

- <u>Realistic cost targets</u>: that a \$ minimum currently occurs at a fuel cost between <u>\$2/gLe</u> and \$4/gLe (vehicle efficiency-corrected).
- <u>Infrastructure design break points</u>: In Ontario, delivered hydrogen is cheaper for loads of up to 25 - 75 vehicles/day. Then on site production is cheaper.
- <u>Value Drivers</u>: Although FVI is the most tangible market driver, <u>other value drivers must</u> <u>also be considered</u>. E.g.; passenger vehicles place value on convenience
- Bus and rail transit applications were not included in this analysis. It is expected that hydrogen will fare well base on the economic FVI augmented by government GHG reduction goals.
- Municipal landfills, ADs, and WWTPs can Methane as a feedstock for SMR hydrogen production yielding a very low (or negative) carbon footprint.
- Full market deployment requires retail hydrogen stations deployed on inter-urban corridors have high commercial risk and will require policy support for development.

#2: Cross Market Synergies **Back Ground**

- Hydrogen Fleet Refuelling Infrastructure is not Stand Alone rather it will be part of a broader Hydrogen Market
- Purpose of the report: To provide a baseline catalogue of cross-sector hydrogen applications and discuss synergies with the large scale deployment of HFCVs and Refuelling Infrastructure.
- The report identifies and assesses these cross sector synergies by examining various:
 - Hydrogen Sources
 - Supply chain pathways
 - Hydrogen end-uses

Cross Market Synergies -Method

• The preliminary assessment involved:

- Discussions with subject area experts from government
 (2), NGOs (4), industry (4), academia (3)
- Additional research and review of current literature.
- These interviews and reviews enabled development of a qualitative assessment of Cross-Sector Opportunities and Challenges

Cross Market Synergies -Findings

 \odot The report includes:

- <u>A catalogue</u> of hydrogen:
 - <u>Sources</u>: waste H₂ collection, electrolysis from P2G systems, electrolysis, SMR, etc.
 - <u>Delivery Pathways</u>: On-site (wire or natural gas), truck (gaseous, liquid), pipeline, etc.
 - <u>Uses:</u> Industrial, stationary power, district heating systems, etc.
- A "Complementarity Table" which provides:
 - An overview of the opportunities and challenges of multiple use deployment in a Canadian context, and
 - A high-level analysis of potential synergies among complementary applications.

Cross Market Synergies – Findings

• High Level Findings (Details to follow!):

- Sources of low-carbon hydrogen for on-road vehicle use, in scalable volumes were identified.
- Economic synergies varied depending on the localized H₂ supply and vehicle mix.
- A limited number of supply chain alternatives were identified that could be readily realized.
- Expanding the market for hydrogen, overall, by integrating a range of end-uses generated some strong logistical and economic synergies. However, these still face technology and infrastructure deployment challenges.

Cross Market Synergies – Recommendations

- Recommendations for further action include the following:
 - Conduct industry-wide focus groups to review the assessment results, and further explore the most promising opportunities.
 - Conduct a quantitative analysis of the most promising cross-sector opportunities to assess the volume/cost potential for FCEV hydrogen supply.
 - Regularly update the "Complementarity Table". Industry may use this as an information tool to help self-identify cross sector opportunities in support of FCEV deployment.
- The two reports discussed here will feed into NRCan's "Hydrogen Pathway Study" which is anticipated to be undertaken later this year... Stay Tuned!

THANKS